Advertisements
Advertisements
Question
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
Solution
Let z = x + iy, then
`|("z" + 3"i")/("z" - 6"i")|` = 1 gives
`|(x + iy + 3"i")/(x + iy - 6"i")|` = 1
∴ `|(x + (y + 3)"i")/(x + (y - 6)"i")| = 1 ...[because |"z"_1/"z"_2| = |"z"_1/"z"_2|]`
∴ |x + (y + 3)i = |x + (y – 6)i|
∴ `sqrt(x^2 + (y + 3)^2) = sqrt(x^2 + (y - 6)^2)`
x2 + (y + 3)2 = x2 + (y – 6)2
∴ x2 + y2 + 6y + 9 = x2 + y2 – 12y + 36
∴ 18y – 27 = 0
∴ 2y – 3 = 0
This is the equation of the required locus.
APPEARS IN
RELATED QUESTIONS
If `omega` is a complex cube root of unity, show that `(2 - omega)(2 - omega^2)` = 7
If `omega` is a complex cube root of unity, find the value of `(1 + omega)(1 + omega^2)(1 + omega^4)(1 + omega^8)`
If x = a + b, y = αa + βb and z = aβ + bα, where α and β are the complex cube roots of unity, show that xyz = a3 + b3.
If ω is a complex cube root of unity, then prove the following: (ω2 + ω - 1)3 = – 8
Find the value of ω18
Find the value of ω21
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
Which of the following is the third root of `(1 + i)/sqrt2`?
The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.
If w is a complex cube-root of unity, then prove the following:
(ω2 + ω − 1)3 = −8
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c+aw+bw^2) = w^2`
If ω is a complex cube root of unity, then prove the following.
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following:
(a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube-root of unity, then prove the following:
(ω2 + ω −1)3 = −8
If ω is a complex cube-root of unity, then prove the following :
(ω2 + ω − 1)3 = − 8
Find the value of `sqrt(-3) xx sqrt(-6)`.
If w is a complex cube-root of unity, then prove the following
(w2 + w - 1)3 = - 8
If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) = w^2`
If w is a complex cube root of unity, show that `((a + bw + cw^2))/(c + aw + bw^2) = w^2`
If ω is a complex cube-root of unity, then prove the following.
(ω2 + ω − 1)3 = −8