हिंदी

If ω is a complex cube root of unity, then prove the following: (a + b) + (aω + bω2) + (aω2 + bω) = 0. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ω is a complex cube root of unity, then prove the following:  (a + b) + (aω + bω2) + (aω2 + bω) = 0.

योग

उत्तर

ω is a complex cube root of unity. 

∴ ω3 = 1 and 1 + ω + ω2 = 0

Also, 1 + ω2 = - ω, 1 + ω = - ω2 
and ω + ω2 = – 1

L.H.S. = (a + b) + (aω + bω2) + (aω2 + bω)

= (a + aω + aω2) + (b + bω + bω2)

= a(1 + ω + ω2) + b(1 + ω + ω2)

= a(0) + b(0)
= 0 = R.H.S.

shaalaa.com
Cube Root of Unity
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Complex Numbers - EXERCISE 3.3 [पृष्ठ ४२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 3 Complex Numbers
EXERCISE 3.3 | Q 5) ii) | पृष्ठ ४२

संबंधित प्रश्न

If ω is a complex cube root of unity, show that (2 + ω + ω2)3 - (1 - 3ω + ω2)3 = 65


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If ω is a complex cube root of unity, find the value of (1 - ω - ω2)3 + (1 - ω + ω2)3


Find the value of ω21


Find the value of ω–30


If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0


If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3


If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab


If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4


If ω is a complex cube root of unity, find the value of (1 + ω2)3


If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.


Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1


If (1 + ω2)m = (1 + ω4)m and ω is an imaginary cube root of unity, then least positive integral value of m is ______.


If α, β, γ are the cube roots of p (p < 0), then for any x, y and z, `(xalpha + "y"beta + "z"gamma)/(xbeta + "y"gamma + "z"alpha)` = ______.


The value of the expression 1.(2 – ω) + (2 – ω2) + 2.(3 – ω)(3 – ω2) + ....... + (n – 1)(n – ω)(n – ω2), where ω is an imaginary cube root of unity is ______.


If w is a complex cube root of unity, show that `((a+bw+cw^2))/(c+aw+bw^2) =w^2`


 Find the value of `sqrt(-3)xx sqrt (-6)`


If w is a complex cube-root of unity, then prove the following. 

(w+ w - 1)= - 8


If ω is a complex cube root of unity, show that `((a + b\omega + c\omega^2))/(c + a\omega + b\omega^2) = \omega^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×