Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation
`2x^2 - sqrt(3)x + 1` = 0
उत्तर
Given equation is `2x^2 - sqrt(3)x + 1` = 0
Comparing with ax2 + bx + c = 0, we get
a = 2, b = `-sqrt(3)`, c = 1
Discriminant = b2 – 4ac
= `(-sqrt(3))^2 - 4 xx 2 xx 1`
= 3 – 8
= – 5 < 0
So, the given equation has complex roots.
These roots are given by
x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-(-sqrt(3)) ± sqrt(-5))/(2(2))`
x = `(sqrt(3) ± sqrt(5)"i")/4`
∴ the roots of the given equation are
`(sqrt(3) + sqrt(5)"i")/4` and `(sqrt(3) - sqrt(5)"i")/4`
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equation.
8x2 + 2x + 1 = 0
Solve the following quadratic equation.
3x2 − 7x + 5 = 0
Solve the following quadratic equation.
x2 − 4x + 13 = 0
Solve the following quadratic equation.
x2 + 3ix + 10 = 0
Solve the following quadratic equation.
2x2 + 3ix + 2 = 0
Solve the following quadratic equation.
x2 + 4ix − 4 = 0
Solve the following quadratic equation.
ix2 − 4x − 4i = 0
Solve the following quadratic equation.
`x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
Solve the following quadratic equation.
x2 − (5 − i) x + (18 + i) = 0
Solve the following quadratic equation.
(2 + i)x2 − (5 − i) x + 2(1 − i) = 0
Find the value of x3 − x2 + x + 46, if x = 2 + 3i
Find the value of 2x3 − 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of x3 + x2 − x + 22, if x = `5/(1 - 2"i")`
Find the value of x4 + 9x3 + 35x2 − x + 4, if x = `-5+sqrt(-4)`
Find the value of 2x4 + 5x3 + 7x2 − x + 41, if x = `-2 - sqrt(3)"i"`
Let z be a complex number such that the imaginary part of z is non zero and a = z2 + z + 1 is real. Then a cannot take the value ______
Find the value of x3-x2 , if x=2+3i
Find the value of x3 - x2 + x + 46, if x = 2+3i.
Find the value of x3 - x2 + x + 46, if x = 2 + 3i.