Advertisements
Advertisements
प्रश्न
Find the value of 2x3 − 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
उत्तर
x = `25/(3 - 4"i")`
∴ x = `(25(3 + 4"i"))/((3 - 4"i")(3 + 4"i"))`
= `(25(3 + 4"i"))/(9 - 16"i"^2)`
= `(25(3 + 4"i"))/(9 - 16(-1))` ...[∵ i2 = – 1]
= `(25(3 + 4"i"))/25`
∴ x = 3 + 4i
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(–1) ...[∵ i2 = – 1]
∴ x2 – 6x + 25 = 0 ...(i)
2x + 1
`x^2 - 6x + 25")"overline( 2x^3 - 11x^2 + 44x + 27`
2x3 − 12x2 + 50x
− + −
x2 − 6x + 27
x2 − 6x + 25
− + −
2
Dividend = Divisor x Quotient + Remainder
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0.(2x + 1) + 2
= 0 + 2 ...[From (i)]
= 2
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equation.
8x2 + 2x + 1 = 0
Solve the following quadratic equation
`2x^2 - sqrt(3)x + 1` = 0
Solve the following quadratic equation.
3x2 − 7x + 5 = 0
Solve the following quadratic equation.
x2 − 4x + 13 = 0
Solve the following quadratic equation.
x2 + 3ix + 10 = 0
Solve the following quadratic equation.
x2 + 4ix − 4 = 0
Solve the following quadratic equation.
x2 − (2 + i)x − (1 − 7i) = 0
Solve the following quadratic equation.
`x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
Solve the following quadratic equation.
x2 − (5 − i) x + (18 + i) = 0
Solve the following quadratic equation.
(2 + i)x2 − (5 − i) x + 2(1 − i) = 0
Find the value of x3 − x2 + x + 46, if x = 2 + 3i
Find the value of x3 + x2 − x + 22, if x = `5/(1 - 2"i")`
Find the value of x4 + 9x3 + 35x2 − x + 4, if x = `-5+sqrt(-4)`
Find the value of 2x4 + 5x3 + 7x2 − x + 41, if x = `-2 - sqrt(3)"i"`
Let z be a complex number such that the imaginary part of z is non zero and a = z2 + z + 1 is real. Then a cannot take the value ______
Find the value of x3-x2 , if x=2+3i
Find the value of x3 - x2 + x + 46, if x = 2+3i.
Find the value of x3 - x2 + x + 46, if x = 2 + 3i.