Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation.
(2 + i)x2 − (5 − i) x + 2(1 − i) = 0
उत्तर
Given equation is (2 + i)x2 − (5 − i) x + 2(1 − i) = 0
Comparing with ax2 + bx + c = 0, we get
a = 2 + i, b = −(5 − i), c = 2(1 − i)
Discriminant = b2 − 4ac
= [−(5 − i)]2 − 4 x (2 + i) x 2(1 − i)
= 25 − 10i + i2 − 8(2 + i) (1 − i)
= 25 − 10i + i2 − 8(2 − 2i + i − i2)
= 25 − 10i − 1 − 8(2 − i + 1) ...[∵ i2 = –1]
= 25 − 10i − 1 − 16 + 8i − 8
= − 2i
So, the given equation has complex roots.
These roots are given by
x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-[-(5 - "i")] ± sqrt(-2"i"))/(2(2 + "i"))`
= `((5 - "i") ± sqrt(-2"i"))/(2(2 + "i"))`
Let `sqrt(-2"i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
–2i = a2 + b2i2 + 2abi
∴ –2i = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 0 and 2ab = – 2
∴ a2 – b2 = 0 and b = `-1/"a"`
∴ `"a"^2 - ((-1)/"a")^2` = 0
∴ `"a"^2 - 1/"a"^2` = 0
∴ a4 – 1 = 0
∴ (a2 – 1)(a2 + 1) = 0
∴ a2 = 1 or a2 = – 1
But a ∈ R
∴ a2 ≠ – 1
∴ a2 = 1
∴ a = ± 1
When a = 1, b = – 1
When a = – 1, b = 1
∴ `sqrt(-2"i")` = ± (1 – i)
∴ x = `((5 - "i") ± (1 - "i"))/(2(2 + "i")) `
∴ x = `(5 - "i" + 1 - "i")/(2(2 + "i"))` or x = `(5 - "i" - 1 + "i")/(2(2 + "i"))`
∴ x = `(6 - 2"i")/(2(2 + "i"))` or x = `4/(2(2 + "i"))`
∴ x = `(2(3 - "i"))/(2(2 + "i"))` or x = `2/(2 + "i")`
∴ x = `(3 - "i")/(2 + "i")` or x = `(2(2 - "i"))/((2 + "i")(2 - "i"))`
∴ x = `((3 - "i")(2 - "i"))/((2 + "i")(2 - "i"))` or x = `(2(2 - "i"))/(4 - "i"^2)`
∴ x = `(6 - 5"i" + "i"^2)/(4 - "i"^2)` or x = `(4 - 2"i")/(4 - "i"^2)`
∴ x = `(5 - 5"i")/5` or x = `(4 - 2"i")/5` ...[∵ i2 = –1]
∴ x = 1 – i or x = `4/5 - (2"i")/5`
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equation.
8x2 + 2x + 1 = 0
Solve the following quadratic equation
`2x^2 - sqrt(3)x + 1` = 0
Solve the following quadratic equation.
3x2 − 7x + 5 = 0
Solve the following quadratic equation.
x2 − 4x + 13 = 0
Solve the following quadratic equation.
x2 + 3ix + 10 = 0
Solve the following quadratic equation.
2x2 + 3ix + 2 = 0
Solve the following quadratic equation.
x2 + 4ix − 4 = 0
Solve the following quadratic equation.
x2 − (2 + i)x − (1 − 7i) = 0
Solve the following quadratic equation.
`x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
Solve the following quadratic equation.
x2 − (5 − i) x + (18 + i) = 0
Find the value of x3 − x2 + x + 46, if x = 2 + 3i
Find the value of x3 + x2 − x + 22, if x = `5/(1 - 2"i")`
Find the value of x4 + 9x3 + 35x2 − x + 4, if x = `-5+sqrt(-4)`
Find the value of 2x4 + 5x3 + 7x2 − x + 41, if x = `-2 - sqrt(3)"i"`
Let z be a complex number such that the imaginary part of z is non zero and a = z2 + z + 1 is real. Then a cannot take the value ______
Find the value of x3-x2 , if x=2+3i
Find the value of x3 - x2 + x + 46, if x = 2+3i.
Find the value of x3 - x2 + x + 46, if x = 2 + 3i.