Advertisements
Advertisements
प्रश्न
Solve the following quadratic equation.
`x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
उत्तर
Given equation is `x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
Comparing with ax2 + bx + c = 0, we get
a = 1, b = `-(3sqrt(2) + 2"i")` c = `6sqrt(2)"i"`
Discriminant = b2 – 4ac
= `[-(3sqrt(2) + 2"i")]^2 - 4 xx 1 xx 6sqrt(2)"i"`
= `18 + 12sqrt(2)"i" + 4"i"^2 - 24sqrt(2)"i"`
= `18 - 12sqrt(2)"i" - 4` ...[∵ i2 = – 1]
= `14 - 12sqrt(2)"i"`
So, the given equation has complex roots.
These roots are given by
x = `(-"b" ± sqrt("b"^2 - 4"ac"))/(2"a")`
= `(-[-(3sqrt(2) + 2"i")] ± sqrt(14 - 12sqrt(2)"i"))/(2(1))`
= `((3sqrt(2) + 2"i") ± sqrt(14 -12sqrt(2)"i"))/2`
Let `sqrt(14 - 12sqrt(2)"i")` = a + bi, where a, b ∈ R
Squaring on both sides, we get
`14 - 12sqrt(2)"i"` = a2 + i2b2 + 2abi
`14 - 12sqrt(2)"i"` = a2 – b2 + 2abi
Equating real and imaginary parts, we get
a2 – b2 = 14 and 2ab = `-12sqrt2`
∴ a2 – b2 = 14 and b = `(-6sqrt(2))/"a"`
∴ `"a"^2 - ((-6sqrt(2))/"a")^2` = 14
∴ `"a"^2 - 72/"a"^2` = 14
∴ a4 – 72 = 14a2
∴ a4 – 14a2 – 72 = 0
∴ (a2 – 18) (a2 + 4) = 0
∴ a2 = 18 or a2 = – 4
But a ∈ R
∴ a2 ≠ – 4
∴ a2 = 18
∴ a = `± 3sqrt(2)`
When a = `3sqrt(2)`, b = `(-6sqrt(2))/(3sqrt(2))` = – 2
When a = `-3sqrt(2)`, b = `(-6sqrt(2))/(-3sqrt(2))` = 2
∴ `sqrt(14 - 12sqrt(2)"i"` = `± (3sqrt(2) - 2"i")`
∴ x = `((3sqrt(2) + 2"i") ± (3sqrt(2) -2"i"))/2`
∴ x = `((3sqrt(2) + 2"i") + (3sqrt(2) -2"i"))/2`
or x = `((3sqrt(2) + 2"i") - (3sqrt(2) -2"i"))/2`
∴ x = `3sqrt(2)` or x = 2i
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equation.
8x2 + 2x + 1 = 0
Solve the following quadratic equation
`2x^2 - sqrt(3)x + 1` = 0
Solve the following quadratic equation.
3x2 − 7x + 5 = 0
Solve the following quadratic equation.
x2 − 4x + 13 = 0
Solve the following quadratic equation.
x2 + 3ix + 10 = 0
Solve the following quadratic equation.
2x2 + 3ix + 2 = 0
Solve the following quadratic equation.
x2 + 4ix − 4 = 0
Solve the following quadratic equation.
ix2 − 4x − 4i = 0
Solve the following quadratic equation.
x2 − (2 + i)x − (1 − 7i) = 0
Solve the following quadratic equation.
x2 − (5 − i) x + (18 + i) = 0
Solve the following quadratic equation.
(2 + i)x2 − (5 − i) x + 2(1 − i) = 0
Find the value of x3 − x2 + x + 46, if x = 2 + 3i
Find the value of 2x3 − 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of x3 + x2 − x + 22, if x = `5/(1 - 2"i")`
Find the value of 2x4 + 5x3 + 7x2 − x + 41, if x = `-2 - sqrt(3)"i"`
Let z be a complex number such that the imaginary part of z is non zero and a = z2 + z + 1 is real. Then a cannot take the value ______
Find the value of x3-x2 , if x=2+3i
Find the value of x3 - x2 + x + 46, if x = 2+3i.
Find the value of x3 - x2 + x + 46, if x = 2 + 3i.