हिंदी

Convert the complex number z = i-1cos π3+isin π3 in the polar form - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form

योग

उत्तर

z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)`

= `("i" - 1)/(1/2 + "i"(sqrt(3)/2))`

= `(2"i" - 2)/(1 + sqrt(3)"i")`

= `(2"i" - 2)/(1 + sqrt(3)"i") xx (1 - sqrt(3)"i")/(1 - sqrt(3)"i")`

= `(2"i" - 2sqrt(3)"i"^2 - 2 + 2sqrt(3)"i")/(1 - 3"i"^2)`

= `(2"i" + 2sqrt(3) - 2 + 2sqrt(3)"i")/(1 + 3)`   ...[∵ i2 = – 1]

= `((-2 + 2sqrt(3)) + (2 + 2sqrt(3))"i")/4`

∴ z = `((-1 + sqrt(3))/2) + ((1 + sqrt(3))/2)"i"`

This is of the form a + bi, where

a = `(-1 + sqrt(3))/2` and b = `(1 + sqrt(3))/2`

∴ r = `sqrt("a"^2 + "b"^2)`

= `sqrt(((sqrt(3) - 1)/2)^2 + ((sqrt(3) + 1)/2)^2`

= `sqrt((3 + 1 - 2sqrt(3))/4 + (3 + 1 + 2sqrt(3))/4)`

= `sqrt(8/4)`

= `sqrt(2)`

Also, cos θ = `"a"/"r" = (sqrt(3) - 1)/(2sqrt(2))`

and sin θ  = `"b"/"r" -= (sqrt(3) + 1)/(2sqrt(2))`

∴ tan θ =`(sqrt(3) + 1)/(sqrt(3) - 1)`

∴ the polar form of z = r(cos θ + i sin θ)

= `sqrt(2)(cos theta + "i" sin theta)`,

where tan θ = `(sqrt(3) + 1)/(sqrt(3) - 1)`

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.3 | Q 7 | पृष्ठ १५

संबंधित प्रश्न

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus and amplitude of 4 + 3i are ______


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×