Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
विकल्प
`-(2pi)/3`
`pi/3`
`-pi/3`
`(2pi)/3`
उत्तर
`(2pi)/3`
Explanation;
reiθ = `-1 + "i"sqrt(3)`
= `2((-1)/2 + "i"sqrt(3)/2) ...[("a" = (-1)/2),("b" = sqrt(3)/2)]`
= `2[cos(pi - pi/3) + "i"sin (pi - pi/3)]`
= `2(cos (2pi)/3 + "i"sin (2pi)/3)`
∴ θ = `(2pi)/3`.
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
1 + i
Find the modulus and amplitude of the following complex numbers.
`1 + "i"sqrt(3)`
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`("z" + bar"z")` is real
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus of z = `sqrt7` + 3i is ______
The modulus and amplitude of 4 + 3i are ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.
If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.