हिंदी

Z1 = 1 + i, z2 = 2 − 3i. Verify the following : (z1z2)¯=z1¯z2¯ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`

योग

उत्तर

z1 = 1 + i and z2 = 2 − 3i

∴ `bar("z"_1)` = 1 − i and `bar("z"_2)` = 2 + 3i

`"z"_1/"z"_2 = (1 + "i")/(2 -3"i")` 

= `(1 + "i")/(2 - 3"i") xx (2 + 3"i")/(2 + 3"i")`

= `(2 + 3"i" + 2"i" + 3"i"^2)/(4 - 9"i"^2)`

=`(2 + 5"i" - 3)/(4 + 9)`    ...[∵ i2 = – 1]

=`(-1 + 5"i")/13`

=`-1/13 + 5/13"i"` 

∴ `bar(("z"_1/"z"_2)) = -1/13 - 5/13"i"` .......(1)

`bar("z"_1)/(bar("z")_2) = (1 - "i")/(2 + 3"i")`

= `(1 - "i")/(2 + 3"i") xx (2 - 3"i")/(2 - 3"i")`

= `(2- 3"i" - 2"i" + 3"i"^2)/(4 - 9"i"^2)`

= `(2 - 5"i" - 3)/(4 + 9)`   ...[∵ i2 = – 1]

= `(-1 - 5"i")/13`

= `-1/13 - 5/13"i"` ........(2)

From (1) and (2), we get,

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.3 | Q 9. (iv) | पृष्ठ १५

संबंधित प्रश्न

Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×