English

Z1 = 1 + i, z2 = 2 − 3i. Verify the following : (z1z2)¯=z1¯z2¯ - Mathematics and Statistics

Advertisements
Advertisements

Question

z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`

Sum

Solution

z1 = 1 + i and z2 = 2 − 3i

∴ `bar("z"_1)` = 1 − i and `bar("z"_2)` = 2 + 3i

`"z"_1/"z"_2 = (1 + "i")/(2 -3"i")` 

= `(1 + "i")/(2 - 3"i") xx (2 + 3"i")/(2 + 3"i")`

= `(2 + 3"i" + 2"i" + 3"i"^2)/(4 - 9"i"^2)`

=`(2 + 5"i" - 3)/(4 + 9)`    ...[∵ i2 = – 1]

=`(-1 + 5"i")/13`

=`-1/13 + 5/13"i"` 

∴ `bar(("z"_1/"z"_2)) = -1/13 - 5/13"i"` .......(1)

`bar("z"_1)/(bar("z")_2) = (1 - "i")/(2 + 3"i")`

= `(1 - "i")/(2 + 3"i") xx (2 - 3"i")/(2 - 3"i")`

= `(2- 3"i" - 2"i" + 3"i"^2)/(4 - 9"i"^2)`

= `(2 - 5"i" - 3)/(4 + 9)`   ...[∵ i2 = – 1]

= `(-1 - 5"i")/13`

= `-1/13 - 5/13"i"` ........(2)

From (1) and (2), we get,

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×