English

If z = 3 + 5i then represent the zzzzz,z¯,-z,-z¯ in Argand's diagram - Mathematics and Statistics

Advertisements
Advertisements

Question

If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram

Diagram
Sum

Solution

If z = 3 + 5i, then

`bar"z"` = 3 – 5i,
– z = – 3 – 5i and
`-bar("z")` = – 3 + 5i

The above complex numbers will be represented by the points A(3, 5), B(3, –5), C(–3, –5), D(–3, 5) respectively as shown below:

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The modulus and amplitude of 4 + 3i are ______


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×