Advertisements
Advertisements
Question
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Solution
Let z = `(1 + 2"i")/(1 - 3"i")`
= `(1 + 2"i")/(1 - 3"i") xx (1 + 3"i")/(1 + 3"i")`
= `(1 + 3"i" + 2"i" + 6"i"^2)/(1 - 9"i"^2)`
= `(1 + 5"i" - 6)/(1 + 9)` ...[∵ i2 = – 1]
∴ z = `(-5 + 5"i")/10`
= `-1/2 + 1/2`i
This is of the form a + bi, where a = `-1/2`, b = `1/2`
∴ r = `sqrt("a"^2 + "b"^2)`
= `sqrt((-1/2)^2 + (1/2)^2)`
= `sqrt(1/4 + 1/4)`
= `1/sqrt(2)`
Also, cos θ = `"a"/"r" = ((-1/2))/((1/sqrt(2))) = -1/sqrt(2)`
and sin θ = `"b"/"r" = ((1/2))/((1/sqrt(2))) = 1/sqrt(2)`
`∴ θ = (3pi)/4 ...[(because cos (3pi)/4 = cos (pi - pi/4) = -cos pi/4 = -1/sqrt(2)),(and sin (3pi)/4 = sin(pi - pi/4) = sin pi/4 = 1/sqrt(2))]`
∴ the polar form of z = r (cos θ + i sin θ)
= `1/sqrt(2)(cos (3pi)/4 + "i" sin (3pi)/4)`
and the exponential form of z = reiθ
= `1/sqrt(2)"e"^("i"((3pi)/4)`
= `1/sqrt(2)"e"^(((3pi)/4)"i"`
APPEARS IN
RELATED QUESTIONS
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−3(1 − i)
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
3
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`1/(1 + "i")`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Answer the following:
Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus and amplitude of 4 + 3i are ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.