English

Find the modulus and amplitude of the following complex numbers. −4 − 4i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the modulus and amplitude of the following complex numbers.

−4 − 4i

Sum

Solution

Let z = −4 − 4i.

Here, a = −4, b = −4 i.e., a < 0, b < 0

∴ |z| = `sqrt(xa^2 + y^2)`

= `sqrt((-4)^2 + (-4)^2`

= `sqrt(16 + 16)`

= `sqrt(32)`

= `4sqrt(2)`

Here, (-4, -4) lies in 3rd quadrant.

∴ amp (z) = `tan^-1(y/x) + pi`

= `tan^-1((-4)/(-4)) + pi`

`= tan^-1(1) = tan^-1 (tan  pi/4)`

`= pi/4`

Hence, modulus = `4sqrt2`  and

amplitude = `tan^-1 (1) or (pi/4)`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


The modulus of z = `sqrt7` + 3i is ______


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×