Advertisements
Advertisements
Question
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Solution
Let z = `(1)/sqrt(2) + (1)/sqrt(2)"i"`
∴ a = `(1)/sqrt(2)`, b = `(1)/sqrt(2)`, a > 0, b > 0
∴ |z| = r
= `sqrt("a"^2 + "b"^2)`
= `sqrt(((1)/sqrt(2))^2 + ((1)/sqrt(2))^2`
= `sqrt(1/2 + 1/2)`
= 1
Here `(1/sqrt(2), 1/sqrt(2))` lies in 1st quadrant
amp (z) = θ = `tan^-1("b"/"a")`
= `tan^-1((1/sqrt(2))/(1/sqrt(2)))`
= tan–1(1) = `pi/4`
∴ θ = 45° = `pi/4`
∴ the polar form of z = r(cos θ + i sin θ)
= 1(cos 45° + i sin 45°)
= `1(cos pi/4 + "i"sin pi/4)`
APPEARS IN
RELATED QUESTIONS
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
3
Find the modulus and amplitude of the following complex numbers.
`1 + "i"sqrt(3)`
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
`1/(1 + "i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`("z" + bar"z")` is real
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If arg(z) = θ, then arg `bar(("z"))` =
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
The modulus of z = `sqrt7` + 3i is ______
The modulus and amplitude of 4 + 3i are ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______.