Advertisements
Advertisements
Question
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Solution
Let z = – 3i = 0 – 3i
This is of the form a + bi, where a = 0, b = – 3
∴ modulus = r
= `sqrt("a"^2 + "b"^2)`
= `sqrt(0^2 + (-3)^2)`
= `sqrt(0 + 9)`
= 3
If θ is the amplitude, then
∴ amp (z) = θ = `(3pi)/2`
∴ θ = 270° = `(3pi)/2`
∴ the polar form of z = r(cos θ + i sin θ)
= 3(cos 270° + i sin 270°)
= `3(cos (3pi)/2 + "i" sin (3pi)/2)`
APPEARS IN
RELATED QUESTIONS
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−3(1 − i)
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
1 + i
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus of z = `sqrt7` + 3i is ______
The modulus and amplitude of 4 + 3i are ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.
If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.