English

Answer the following: Convert the complex numbers in polar form and also in exponential form. z = -6+2i - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`

Sum

Solution

z = `-6 + sqrt(2)"i"`

∴ a = – 6, b = `sqrt(2)`, i.e. a < 0, b > 0

∴ r = `sqrt("a"^2 + "b"^2)`

= `sqrt((-6)^2 + (sqrt(2))^2`

= `sqrt(36 + 2)`

= `sqrt(38)`

Here `(-6, sqrt(2))` lies in 2nd quadrant

∴ amp (z) = θ 

= `pi + tan^-1("b"/"a")`

= `tan^-1(-sqrt(2)/6) + pi`

∴ the polar form of z = r(cos θ + i sin θ)

∴ `sqrt(38)(cos theta + "i" sin theta)`, where θ

= `pi + tan^-1(-sqrt(2)/6)`

∴ The exponential form of z = re

`sqrt(38)"e" ^(pi + tan^-1(-sqrt(2)/6)`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Miscellaneous Exercise 1.2 [Page 22]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (12) (ii) | Page 22

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus of z = `sqrt7` + 3i is ______


The modulus and amplitude of 4 + 3i are ______


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×