English

Find the modulus and argument of the complex number 1+2i1-3i - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`

Sum

Solution

Let z = `(1 + 2"i")/(1 - 3"i")`

= `(1 + 2"i")/(1 - 3"i") xx (1 + 3"i")/(1 + 3"i")`

= `(1 + 3"i" + 2"i" + 6"i"^2)/(1 - 9"i"^2)`

= `(1 + 5"i" - 6)/(1 + 9)`   ...[∵ i2 = – 1]

∴ z = `(-5 + 5"i")/10`

= `-1/2 + 1/2"i"`

This is of the form a + bi, where a = `-1/2`, b = `1/2`

∴ modulus = r 

= `sqrt("a"^2 + "b"^2)`

= `sqrt((-1/2)^2 + (1/2)^2)`

= `sqrt(1/4 + 1/4)`

= `1/sqrt(2)`

If θ is the argument, then

cos θ = `"a"/"r"`

= `((-(1)/2))/((1/sqrt(2)))`

= `-1/sqrt(2)`

and sin θ = `"b"/"r"`

= `((1/2))/((1/sqrt(2))`

= `1/sqrt(2)`

`∴ θ = (3pi)/4    ...[(because cos  (3pi)/4 = cos(pi - pi/4) = -cos  pi/4=), (-1/sqrt(2) and sin  (3pi)/4 = sin(pi - pi/4) = sin  pi/4 = 1/sqrt(2))]`

Hence, modulus = `1/sqrt(2)` and argurement = `(3pi)/4`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×