English

Express the following numbers in the form x + iy: 2(cos 7π4+isin 7π4) - Mathematics and Statistics

Advertisements
Advertisements

Question

Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`

Sum

Solution

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`

= `sqrt(2)[cos(2pi - pi/4) + "i" sin(2pi - pi/4)]`

= `sqrt(2)[cos  pi/4 - "i" sin  pi/4]` 

= `sqrt(2)[1/sqrt(2) + "i"  (-1/sqrt(2))]`

= 1 – i

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The modulus of z = `sqrt7` + 3i is ______


The modulus and amplitude of 4 + 3i are ______


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×