Advertisements
Advertisements
Question
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Solution
Let z = `(1 + sqrt(3)"i")/2 = 1/2 + sqrt(3)/2"i"`
∴ a = `1/2`, b = `sqrt(3)/2`, a, b > 0
∴ |z| = r
= `sqrt("a"^2 + "b"^2)`
= `sqrt((1/2)^2 + (sqrt(3)/2)^2`
= `sqrt(1/4 + 3/4)`
= 1
Here `(1/2, sqrt(3)/2)` lies in 1st quadrant
amp (z) = θ = `tan^-1("b"/"a")`
= `tan^-1((sqrt(3)/2)/(1/2))`
= `tan^-1(sqrt(3))`
= `pi/3`
∴ θ = 60° = `pi/3`
∴ the polar form of z = r(cos θ + i sin θ)
= 1(cos 60° + i sin 60°)
= `1(cos pi/3 + "i" sin pi/3)`
APPEARS IN
RELATED QUESTIONS
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−3(1 − i)
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
1 + i
Find the modulus and amplitude of the following complex numbers.
`1 + "i"sqrt(3)`
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
`1/(1 + "i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Answer the following:
Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The modulus of z = `sqrt7` + 3i is ______
The modulus and amplitude of 4 + 3i are ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.