English

For z = 2 + 3i verify the following: z-z¯ = 6i - Mathematics and Statistics

Advertisements
Advertisements

Question

For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i

Sum

Solution

z = 2 + 3i

∴ `bar("z")` = 2 – 3i

∴ `"z" - bar"z"` = (2 + 3i) – (2 – 3i)

= 2 + 3i – 2 + 3i

= 6i

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The modulus of z = `sqrt7` + 3i is ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×