Advertisements
Advertisements
Question
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
Solution
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
= `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i") xx (5 - sqrt(3)"i")/(5 - sqrt(3)"i")`
= `(10 - 2sqrt(3)"i" + 30sqrt(3)"i" - 18"i"^2)/(25 - 3"i"^2)`
= `(10 + 28sqrt(3)"i" + 18)/(25 + 3)` ...[∵ i2 = – 1]
= `(28 + 28sqrt(3)"i")/28`
∴ z = `1 + sqrt(3)"i"`
This is of the form a + bi, where a = 1, b = `sqrt(3)`
∴ r = `sqrt("a"^2 + "b"^2)`
= `sqrt(1^2 + (sqrt(3))^2`
= `sqrt(1 + 3)`
= 2
If θ is the amplitude, then cos θ = `"a"/"r" = 1/2`
and sin θ = `"b"/"r" = sqrt(3)/2`
∴ θ = `pi/3 ...[because cos pi/3 = 1/2 and sin pi/3 = sqrt(3)/2]`
∴ polar form of z = r(cos θ + i sin θ)
= `2(cos pi/3 + "i" sin pi/3)`
and the exponential form of z = reiθ
= `2"e"^("i"(pi/3))`
= `2"e"^(pi/3"i")`
APPEARS IN
RELATED QUESTIONS
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
3
Find the modulus and amplitude of the following complex numbers.
1 + i
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`1/(1 + "i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
Select the correct answer from the given alternatives:
If arg(z) = θ, then arg `bar(("z"))` =
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
The modulus and amplitude of 4 + 3i are ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.