English

Z1 = 1 + i, z2 = 2 − 3i. Verify the following : z1-z2¯=z1¯-z2¯ - Mathematics and Statistics

Advertisements
Advertisements

Question

z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`

Sum

Solution

z1 = 1 + i, z2 = 2 − 3i

∴ `bar("z"_1)` = 1 − i, `bar("z"_2)` = 2 + 3i

z1 − z2 = (1 + i) − (2 − 3i)

= 1 + i − 2 + 3i

= − 1 + 4i

∴ `bar("z"_1 - "z"_2)` = − 1 − 4i 

`bar("z"_1) - bar("z"_2)` = (1 − i) − (2 + 3i)

= 1 − i − 2 − 3i

= − 1 − 4i 

∴ `bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus of z = `sqrt7` + 3i is ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×