English

Convert the complex number z = i-1cos π3+isin π3 in the polar form - Mathematics and Statistics

Advertisements
Advertisements

Question

Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form

Sum

Solution

z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)`

= `("i" - 1)/(1/2 + "i"(sqrt(3)/2))`

= `(2"i" - 2)/(1 + sqrt(3)"i")`

= `(2"i" - 2)/(1 + sqrt(3)"i") xx (1 - sqrt(3)"i")/(1 - sqrt(3)"i")`

= `(2"i" - 2sqrt(3)"i"^2 - 2 + 2sqrt(3)"i")/(1 - 3"i"^2)`

= `(2"i" + 2sqrt(3) - 2 + 2sqrt(3)"i")/(1 + 3)`   ...[∵ i2 = – 1]

= `((-2 + 2sqrt(3)) + (2 + 2sqrt(3))"i")/4`

∴ z = `((-1 + sqrt(3))/2) + ((1 + sqrt(3))/2)"i"`

This is of the form a + bi, where

a = `(-1 + sqrt(3))/2` and b = `(1 + sqrt(3))/2`

∴ r = `sqrt("a"^2 + "b"^2)`

= `sqrt(((sqrt(3) - 1)/2)^2 + ((sqrt(3) + 1)/2)^2`

= `sqrt((3 + 1 - 2sqrt(3))/4 + (3 + 1 + 2sqrt(3))/4)`

= `sqrt(8/4)`

= `sqrt(2)`

Also, cos θ = `"a"/"r" = (sqrt(3) - 1)/(2sqrt(2))`

and sin θ  = `"b"/"r" -= (sqrt(3) + 1)/(2sqrt(2))`

∴ tan θ =`(sqrt(3) + 1)/(sqrt(3) - 1)`

∴ the polar form of z = r(cos θ + i sin θ)

= `sqrt(2)(cos theta + "i" sin theta)`,

where tan θ = `(sqrt(3) + 1)/(sqrt(3) - 1)`

shaalaa.com
Argand Diagram Or Complex Plane
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Exercise 1.3 [Page 15]

RELATED QUESTIONS

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


Express the following complex numbers in polar form and exponential form:

− i


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×