हिंदी

Express the following complex numbers in polar form and exponential form: 1+2i1-3i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`

योग

उत्तर

Let z = `(1 + 2"i")/(1 - 3"i")`

= `(1 + 2"i")/(1 - 3"i") xx (1 + 3"i")/(1 + 3"i")`

= `(1 + 3"i" + 2"i" + 6"i"^2)/(1 - 9"i"^2)`

= `(1 + 5"i" - 6)/(1 + 9)`    ...[∵ i2 = – 1]

∴ z = `(-5 + 5"i")/10`

= `-1/2 + 1/2`i

This is of the form a + bi, where a = `-1/2`, b = `1/2`

∴ r = `sqrt("a"^2 + "b"^2)`

= `sqrt((-1/2)^2 + (1/2)^2)`

= `sqrt(1/4 + 1/4)`

= `1/sqrt(2)`

Also, cos θ = `"a"/"r" = ((-1/2))/((1/sqrt(2))) = -1/sqrt(2)`

and sin θ = `"b"/"r" = ((1/2))/((1/sqrt(2))) = 1/sqrt(2)`

`∴ θ = (3pi)/4    ...[(because  cos  (3pi)/4 = cos (pi - pi/4) = -cos  pi/4 = -1/sqrt(2)),(and sin  (3pi)/4 = sin(pi - pi/4) = sin  pi/4 = 1/sqrt(2))]`

∴ the polar form of z = r (cos θ + i sin θ)

= `1/sqrt(2)(cos  (3pi)/4 + "i" sin  (3pi)/4)`

and the exponential form of z = re

= `1/sqrt(2)"e"^("i"((3pi)/4)`

= `1/sqrt(2)"e"^(((3pi)/4)"i"`

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.3 | Q 4. (v) | पृष्ठ १५

संबंधित प्रश्न

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

1 + i


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×