Advertisements
Advertisements
प्रश्न
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
उत्तर
Let z = `(1 + 2"i")/(1 - 3"i")`
= `(1 + 2"i")/(1 - 3"i") xx (1 + 3"i")/(1 + 3"i")`
= `(1 + 3"i" + 2"i" + 6"i"^2)/(1 - 9"i"^2)`
= `(1 + 5"i" - 6)/(1 + 9)` ...[∵ i2 = – 1]
∴ z = `(-5 + 5"i")/10`
= `-1/2 + 1/2`i
This is of the form a + bi, where a = `-1/2`, b = `1/2`
∴ r = `sqrt("a"^2 + "b"^2)`
= `sqrt((-1/2)^2 + (1/2)^2)`
= `sqrt(1/4 + 1/4)`
= `1/sqrt(2)`
Also, cos θ = `"a"/"r" = ((-1/2))/((1/sqrt(2))) = -1/sqrt(2)`
and sin θ = `"b"/"r" = ((1/2))/((1/sqrt(2))) = 1/sqrt(2)`
`∴ θ = (3pi)/4 ...[(because cos (3pi)/4 = cos (pi - pi/4) = -cos pi/4 = -1/sqrt(2)),(and sin (3pi)/4 = sin(pi - pi/4) = sin pi/4 = 1/sqrt(2))]`
∴ the polar form of z = r (cos θ + i sin θ)
= `1/sqrt(2)(cos (3pi)/4 + "i" sin (3pi)/4)`
and the exponential form of z = reiθ
= `1/sqrt(2)"e"^("i"((3pi)/4)`
= `1/sqrt(2)"e"^(((3pi)/4)"i"`
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−3(1 − i)
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
1 + i
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If arg(z) = θ, then arg `bar(("z"))` =
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus and amplitude of 4 + 3i are ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If A, B, C are three points in argand plane representing the complex numbers z1, z2 and z3 such that, z1 = `(λz_2 + z_3)/(λ + 1)`, where λ ∈ R, then find the distance of point A from the line joining points B and C.