Advertisements
Advertisements
प्रश्न
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
उत्तर
Let z = `(4 + 3"i" sintheta)/(1 - 2"i" sintheta)`
= `(4 + 3"i" sintheta)/(1 - 2"i" sintheta) xx (1 + 2"i" sintheta)/(1 + 2"i" sintheta)`
= `(4 + 8"i" sintheta + 3"i" sintheta + 6"i"^2 sin^2theta)/(1 - 4"i"^2 sin^2theta)`
= `(4 + (11 sintheta)"i" - 6 sin^2theta)/(1 + 4 sin^2theta)` ...[∵ i2 = – 1]
= `((4 - 6 sin^2theta) + (11 sintheta)"i")/(1 + 4 sin^2theta)`
∴ z = `((4 - 6 sin^2theta)/(1 + 4 sin^2theta)) + ((11 sintheta)/(1 + 4 sin^2theta))"i"`
Since z is purely real, Im(z) = 0
∴ `(11 sintheta)/(1 + 4 sin^2theta)` = 0
∴ sin θ = 0 = sin nπ, where n ∈ Z
∴ θ = nπ, where n ∈ Z.
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
3
Find the modulus and amplitude of the following complex numbers.
1 + i
Find the modulus and amplitude of the following complex numbers.
`1 + "i"sqrt(3)`
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus of z = `sqrt7` + 3i is ______
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.