मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find real values of θ for which (4+3isinθ1-2isinθ) is purely real. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.

बेरीज

उत्तर

Let z = `(4 + 3"i" sintheta)/(1 - 2"i" sintheta)`

= `(4 + 3"i" sintheta)/(1 - 2"i" sintheta) xx (1 + 2"i" sintheta)/(1 + 2"i" sintheta)`

= `(4 + 8"i" sintheta + 3"i" sintheta + 6"i"^2 sin^2theta)/(1 - 4"i"^2 sin^2theta)`

= `(4 + (11 sintheta)"i" - 6 sin^2theta)/(1 + 4 sin^2theta)`    ...[∵ i2 = – 1]

= `((4 - 6 sin^2theta) + (11 sintheta)"i")/(1 + 4 sin^2theta)`

∴ z = `((4 - 6 sin^2theta)/(1 + 4 sin^2theta)) + ((11 sintheta)/(1 + 4 sin^2theta))"i"`

Since z is purely real, Im(z) = 0

∴ `(11 sintheta)/(1 + 4 sin^2theta)` = 0

∴ sin θ = 0 = sin nπ, where n ∈ Z

∴ θ = nπ, where n ∈ Z.

shaalaa.com
Argand Diagram Or Complex Plane
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

संबंधित प्रश्‍न

Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following complex numbers in polar form and exponential form:

−1


Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy:

`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(1 + sqrt(3)"i")/2`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


The modulus and amplitude of 4 + 3i are ______


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×