Advertisements
Advertisements
प्रश्न
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
उत्तर
Let z = 8 + 15i
∴ a = 8, b = 15, a, b > 0
∴ |z| = r
`sqrt("a"^2 + "b"^2)`
= `sqrt((8)^2 + (15)^2`
= `sqrt(64 + 225)`
= `sqrt(289)`
= 17
Here, (8, 15) lies in 1st quadrant
∴ amp (z) = θ = `tan^-1("b"/"a") = tan^-1(15/8)`
∴ the polar form of z = r(cos θ + i sin θ)
= 17(cosθ + i sinθ), where θ = `tan^-1(15/8)`
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`("z" + bar"z")` is real
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______
If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______.