मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Express the following complex numbers in polar form and exponential form: 1+7i(2-i)2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the following complex numbers in polar form and exponential form:

`(1 + 7"i")/(2 - "i")^2`

बेरीज

उत्तर

Let z = `(1 + 7"i")/(2 - "i")^2`

= `(1 + 7"i")/(4 - 4"i" + "i"^2)`

= `(1 + 7"i")/(4 - 4"i" - 1)`

= `(1 + 7"i")/(3 - 4"i")`

= `((1 + 7"i")(3 + 4"i"))/((3 - 4"i")(3 + 4"i"))`

= `(3 + 4"i" + 21"i" + 28"i"^2)/(9 - 16"i"^2)`

= `(25"i" + 3 + 28(-1))/(9 - 16(-1))`

= `(25"i" - 25)/25`

∴ z = – 1 + i

∴ a = – 1, b = 1

∴ |z| = r

= `sqrt("a"^2 + "b"^2)`

= `sqrt((-1)^2 + 1^2)`

= `sqrt(2)`

Here, (–1, 1) lies in 2nd quadrant

θ = amp (z)

= `pi + tan^-1("b"/"a")`

= `pi + tan^-1(1/(-1))`

= π + tan–1(–1)

= π – tan–1(1)

= `pi - pi/4`

= `(3pi)/4`

∴ θ = 135° = `(3pi)/4`

∴ the polar form of z = r (cos θ + i sin θ)

= `sqrt(2) (cos 135^circ +  "i"  sin 135^circ)`

= `sqrt(2)(cos  (3pi)/4 + "i"  sin  (3pi)/4)`

The exponential form of z = re= `sqrt(2)"e"^((3pi)/4"i"`

shaalaa.com
Argand Diagram Or Complex Plane
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

संबंधित प्रश्‍न

Find the modulus and amplitude of the following complex numbers.

7 − 5i


Find the modulus and amplitude of the following complex numbers.

−4 − 4i


Find the modulus and amplitude of the following complex numbers.

1 + i


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


Find the modulus and amplitude of the following complex numbers.

(1 + 2i)2 (1 − i)


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form:

`(1 + 2"i")/(1 - 3"i")`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

If z = x + iy and |z − zi| = 1 then


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

− 3i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus of z = `sqrt7` + 3i is ______


The modulus and amplitude of 4 + 3i are ______


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×