Advertisements
Advertisements
प्रश्न
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
उत्तर
z1 = 1 + i and z2 = 2 − 3i
∴ `bar("z"_1)` = 1 − i and `bar("z"_2)` = 2 + 3i
`"z"_1/"z"_2 = (1 + "i")/(2 -3"i")`
= `(1 + "i")/(2 - 3"i") xx (2 + 3"i")/(2 + 3"i")`
= `(2 + 3"i" + 2"i" + 3"i"^2)/(4 - 9"i"^2)`
=`(2 + 5"i" - 3)/(4 + 9)` ...[∵ i2 = – 1]
=`(-1 + 5"i")/13`
=`-1/13 + 5/13"i"`
∴ `bar(("z"_1/"z"_2)) = -1/13 - 5/13"i"` .......(1)
`bar("z"_1)/(bar("z")_2) = (1 - "i")/(2 + 3"i")`
= `(1 - "i")/(2 + 3"i") xx (2 - 3"i")/(2 - 3"i")`
= `(2- 3"i" - 2"i" + 3"i"^2)/(4 - 9"i"^2)`
= `(2 - 5"i" - 3)/(4 + 9)` ...[∵ i2 = – 1]
= `(-1 - 5"i")/13`
= `-1/13 - 5/13"i"` ........(2)
From (1) and (2), we get,
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`("z" + bar"z")` is real
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus and amplitude of 4 + 3i are ______
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.