हिंदी

Express the following complex numbers in polar form and exponential form: 11+i - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the following complex numbers in polar form and exponential form:

`1/(1 + "i")`

योग

उत्तर

Let z = `1/(1 + "i")`

= `(1 - "i")/((1 + "i")(1 - "i"))`

= `(1 - "i")/(1 - "i"^2)`

= `(1 - "i")/(1 - (-1))`   ...[∵ i2 = – 1]

= `(1 - "i")/2`

∴ z = `1/2 - 1/2"i"`

∴ a = `1/2`, b = `(-1)/2`

∴ | z | = r

= `sqrt("a"^2 + "b"^2)`

= `sqrt((1/2)^2 + (-1/2)^2)`

= `sqrt(1/4 + 1/4)`

= `1/sqrt(2)`

Here `(1/2, (-1)/2)` lies in 4th quadrant

θ = amp (z)

= `2pi + tan^-1("b"/"a")`

= `2pi + tan^-1(((-1)/2)/(1/2))`

= 2π + tan–1(–1)

= 2π – tan–1(1)

= `2pi - pi/4`

= `(7pi)/4`

∴ θ = 315° = `(7pi)/4`

∴ polar form of z = r (cos θ + i sin θ)

= `1/sqrt(2)(cos 315^circ +  "i"  sin315^circ)`

= `1/sqrt(2)[cos((7pi)/4) + "i"  sin((7pi)/4)]`

The exponential form of z = re

= `1/sqrt(2)"e"^((7pi)/4"i"`.

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.3 [पृष्ठ १५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.3 | Q 4. (iv) | पृष्ठ १५

संबंधित प्रश्न

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−8 + 15i


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form:

− i


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy:

`"e"^((-4pi)/3"i")`


Express the following numbers in the form x + iy:

`"e"^((5pi)/6"i")`


Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

8 + 15i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`(-1 - "i")/sqrt(2)`


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

`1/sqrt(2) + 1/sqrt(2)"i"`


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

z = `-6 + sqrt(2)"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus of z = `sqrt7` + 3i is ______


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `π/4(1 + i)^4((1 - sqrt(π)i)/(sqrt(π) + i) + (sqrt(π) - i)/(1 + sqrt(π)i))`, then `(|z|/("amp"^((z))))` is equals to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×