Advertisements
Advertisements
प्रश्न
Express the following complex numbers in polar form and exponential form:
− i
उत्तर
Let z = − i = 0 − i
∴ a = 0, b = − 1
∴ z lies on negative imaginary Y-axis.
∴ |z| = r
= `sqrt("a"^2 + "b"^2)`
= `sqrt(0^2 + (-1)^2`
= 1
and arg z = 270° = `(3pi)/2`
∴ the polar form of z = r(cos θ + i sin θ)
= 1 (cos 270° + i sin 270°)
= `1(cos (3pi)/2 + "i" sin (3pi)/2)`
The exponential form of z = reiθ = `"e"^((3pi)/2"i")`
APPEARS IN
संबंधित प्रश्न
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
1 + i
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
Select the correct answer from the given alternatives:
If arg(z) = θ, then arg `bar(("z"))` =
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.
The modulus of z = `sqrt7` + 3i is ______
The modulus and amplitude of 4 + 3i are ______
For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.
If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.