हिंदी

Answer the following: Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.

योग

उत्तर

The complex numbers 1 + 2i, 2 − i, − 3 − 2i, − 2 + 3i will be represented by the points A(1, 2), B(2, −1), C(−3, −2), D(−2, 3) respectively as shown below:

shaalaa.com
Argand Diagram Or Complex Plane
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II.07 | पृष्ठ २२

संबंधित प्रश्न

Find the modulus and amplitude of the following complex numbers.

`sqrt(3) + sqrt(2)"i"`


Find the modulus and amplitude of the following complex numbers.

−3(1 − i)


Find the modulus and amplitude of the following complex numbers.

`sqrt(3) - "i"`


Find the modulus and amplitude of the following complex numbers.

3


Find the modulus and amplitude of the following complex numbers.

`1 + "i"sqrt(3)`


If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram


Express the following complex numbers in polar form and exponential form: 

`-1 + sqrt(3)"i"`


Express the following numbers in the form x + iy: 

`sqrt(3)(cos  pi/6 + "i" sin  pi/6)`


Express the following numbers in the form x + iy: 

`sqrt(2)(cos  (7pi)/4 + "i" sin  (7pi)/4)`


Express the following numbers in the form x + iy:

`"e"^(pi/3"i")`


Convert the complex number z = `("i" - 1)/(cos  pi/3 + "i" sin  pi/3)` in the polar form


For z = 2 + 3i verify the following:

`bar((bar"z"))` = z


For z = 2 + 3i verify the following:

`"z"bar("z")` = |z|2


For z = 2 + 3i verify the following:

`("z" + bar"z")` is real


For z = 2 + 3i verify the following:

`"z" - bar"z"` = 6i


z1 = 1 + i, z2 = 2 − 3i. Verify the following : 

`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`


z1 = 1 + i, z2 = 2 − 3i. Verify the following :

`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`


Select the correct answer from the given alternatives:

If arg(z) = θ, then arg `bar(("z"))` =


Select the correct answer from the given alternatives:

If `-1 + sqrt(3)"i"` = re , then θ = ................. 


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

6 − i


Answer the following:

Find the modulus and argument of a complex number and express it in the polar form.

2i


Answer the following:

Convert the complex numbers in polar form and also in exponential form.

`(-3)/2 + (3sqrt(3))/2"i"`


The polar coordinates of the point whose cartesian coordinates are (−2, −2), are given by ____________.


The modulus of z = `sqrt7` + 3i is ______


The modulus and amplitude of 4 + 3i are ______


If x + iy = `5/(3 + costheta + isintheta)`, then x2 + y2 is equal to ______ 


For all complex numbers z1, z2 satisfying |z1| = 12 and |z2 - 3 - 4i| = 5, the minimum value of |z1 - z2| is ______.


If z = `5i ((-3)/5 i)`, then z is equal to 3 + bi. The value of ‘b’ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×