Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`
विकल्प
cos 2θ
2 cos 2θ
2 cos θ
2 sin θ
उत्तर
2 cos 2θ
Explanation:
`"z"/bar"z" = ("r"(costheta + "i"sintheta))/("r"(costheta - "i" sintheta))`
= `(costheta + "i" sintheta)/(cos(-theta) + "i" sin(-theta))`
= (cos θ + i sin θ) (cos (– θ) + i sin (– θ))–1
= (cos θ + i sin θ) (cos θ + i sin θ) ...(De Movire’s Theorem)
= (cos θ + i sin θ)2
= cos 2θ + i sin 2θ ...(De Movire’s Theorem)
∵ `bar(("z"/bar"z")) = bar("z")/"z"`
∴ `"z"/bar("z") + bar("z")/"z" = "d" + bar("d") ...("Where d" = "z"/bar("z"))`
= cos 2θ + i sin 2θ + cos 2θ – i sin 2θ
= 2 cos 2θ
APPEARS IN
संबंधित प्रश्न
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`