Advertisements
Advertisements
प्रश्न
Find the value of `cot^-1(1) + sin^-1 (- sqrt(3)/2) - sec^-1 (- sqrt(2))`
उत्तर
x = `cot^-1(1)`
y = `sin^-1(- sqrt(3)/2)`
cot x = 1 = `cot pi/4`
sin y = `- sqrt(3)/2 = sin (- pi/3)`
x = `pi/4`
y = `- pi/3`
z = `sec^-1 (- sqrt(2))`
sec z = `- sqrt(2)`
sec z = `- sec pi/4`
= `sec(pi - pi/4)`
= `sec (3pi)/4`
z = `+ (3pi)/4`
`cot1(1) + sn-1(- sqrt(3)/2) - sec^-1(- sqrt(2))`
= `pi/4 - pi/3 - (3pi)/4`
= `- pi/3 - (2pi)/4`
= `- pi/3 - pi/2`
= `- (5pi)/6`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sec^-1 (2/sqrt(3))`
Find the principal value of `cot^-1 (sqrt(3))`
Find the principal value of `"cosec"^-1 (- sqrt(2))`
Find the value of `tan^-1 (sqrt(3)) - sec^-1 (- 2)`
Find the value of `sin^-1 (- 1) + cos^-1 (1/2) + cot^-1 (2)`
Choose the correct alternative:
The value of sin–1(cos x), 0 ≤ x ≤ π is
Choose the correct alternative:
If x = `1/5`, the value of `cos(cos^-1x + 2sin^-1x)` is
Choose the correct alternative:
If `sin^-1x + "cosec"^-1 5/4 = pi/2`, then the value of x is
Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation cos–1 (x) – 2sin–1(x) = cos–1 (2x) is equal to ______.
Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5) = sin^-1x` is equal to ______.