हिंदी

Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy sin-1(3x5)+sin-1(4x5)=sin-1x is equal to ______. -

Advertisements
Advertisements

प्रश्न

Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5) = sin^-1x` is equal to ______.

विकल्प

  • 3

  • 1

  • 0

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5)` = sin–1x is equal to 3.

Explanation:

`sin^-1((3x)/5) + sin^-1((4x)/5)` = sin–1x  ...[∵ sin–1x + sin–1y = `sin^-1(xsqrt(1 - y^2) + ysqrt(1 - x^2))`]

`\implies sin^-1((3x)/5 sqrt(1 - (16x^2)/25) + (4x)/5 sqrt(1 - (9x^2)/25))` = sin–1x

`\implies sin^-1((3xsqrt(25 - 16x^2) + 4xsqrt(25 - 9x^2))/25)` = sin–1x

`\implies 3xsqrt(25 - 16x^2) + 4xsqrt(25 - 9x^2)` = 25x

`\implies` x = 0 or

`\implies` 9(25 – 16x2) = `625 + 16(25 - 9x^2) - 200sqrt(25 - 9x^2)`

`\implies 200sqrt(25 - 9x^2)` = 800

`\implies` x2 = 1

`\implies` x = ±1

Total number of solutions = 3

shaalaa.com
Principal Value of Inverse Trigonometric Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×