Advertisements
Advertisements
Question
Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5) = sin^-1x` is equal to ______.
Options
3
1
0
2
Solution
Given that the inverse trigonometric function take principal values only. Then, the number of real values of x which satisfy `sin^-1((3x)/5) + sin^-1((4x)/5)` = sin–1x is equal to 3.
Explanation:
`sin^-1((3x)/5) + sin^-1((4x)/5)` = sin–1x ...[∵ sin–1x + sin–1y = `sin^-1(xsqrt(1 - y^2) + ysqrt(1 - x^2))`]
`\implies sin^-1((3x)/5 sqrt(1 - (16x^2)/25) + (4x)/5 sqrt(1 - (9x^2)/25))` = sin–1x
`\implies sin^-1((3xsqrt(25 - 16x^2) + 4xsqrt(25 - 9x^2))/25)` = sin–1x
`\implies 3xsqrt(25 - 16x^2) + 4xsqrt(25 - 9x^2)` = 25x
`\implies` x = 0 or
`\implies` 9(25 – 16x2) = `625 + 16(25 - 9x^2) - 200sqrt(25 - 9x^2)`
`\implies 200sqrt(25 - 9x^2)` = 800
`\implies` x2 = 1
`\implies` x = ±1
Total number of solutions = 3