हिंदी

Find the values of k so that the quadratic equation (4 – k) x2 + 2 (k + 2) x + (8k + 1) = 0 has equal roots. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of k so that the quadratic equation (4 – k) x2 + 2 (k + 2) x + (8k + 1) = 0 has equal roots.

योग

उत्तर

(4 – k) x2 + 2 (k + 2) x + (8k + 1) = 0
Here a = (4 – k), b = 2 (k + 2), c = 8k + 1
∴ D = b2 – 4ac
= [2(k + 2)]2 – 4 x (4 – k)(8k + 1) = 0
= 4(k + 2)2 - 4(32k + 4 – 8k2 – k)
= 4(k2 + 4k + 4) –4(32k + 4 – 8k2 – k)
= 4k2 + 16k + 16 - 128k – 16 + 32k2 + 4k
= 36k2 – 108k
= 36k(k – 3)
∵ Roots are equal
∴ D = 0
⇒ 36k(k – 3) = 0
⇒ k(k – 3) = 0
Either k = 0
or
k – 3 = 0,
then k= 3
k = 0, 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Quadratic Equations in One Variable - Chapter Test

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 5 Quadratic Equations in One Variable
Chapter Test | Q 11
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×