हिंदी

If the Roots of the Equation (C2 – Ab) X2 – 2 (A2 – Bc) X + B2 – Ac = 0 in X Are Equal, Then Show that Either a = 0 Or A3 + B3 + C3 = 3abc - Mathematics

Advertisements
Advertisements

प्रश्न

If the roots of the equation (c2 – ab) x2 – 2 (a2 – bc) x + b2 – ac = 0 in x are equal, then show that either a = 0 or a3 + b3 + c3 = 3abc

उत्तर

The given quadric equation is `(c^2 - ab)x^2 - 2(a^2 - bc)x + (b^2 - ac) = 0`

THen prove that either a = 0 or `a^3 + b^3 + c^3 = 3abc`

Here

`a = (c^2 - ab), b = -2(a^2 - bc) " and " c = (b^2 - ac)`

As we know that `D = b^2 - 4ac`

Putting the value of `a = (c^2 - ab), b = -2(a^2 - bc) and c = (b^2 - ac)`

The given equation will have real roots, if D = 0

`4a(a^3 + b^3 + c^3 - 3abc) = 0`

`a(a^3 +  b^3 + c^3 - 3abc) = 0`

So , either

a = 0

or

`(a^3 + b^3 + c^3 - 3abc) = 0`

`a^3 + b^3 + c^3 = 3abc`

Hence, a = 0 or `a^3 + b^3 + c^3 = 3abc`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.6 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.6 | Q 21 | पृष्ठ ४३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×