Advertisements
Advertisements
प्रश्न
If p, q are real and p ≠ q, then show that the roots of the equation (p − q) x2 + 5(p + q) x− 2(p − q) = 0 are real and unequal.
उत्तर
The quadric equation is (p − q) x2 + 5(p + q) x− 2(p − q) = 0
Here,
a = (p - q), b = 5(p + q) and c = -2(p - q)
As we know that D = b2 - 4ac
Putting the value of a = (p - q), b = 5(p + q) and c = -2(p - q)
D = {5(p + q)}2 - 4 x (p - q) x (-2(p - q))
= 25(p2 + 2pq + q2) + 8(p2 - 2pq + q2)
= 25p2 + 50pq + 25q2 + 8p2 - 16pq + 8q2
= 33p2 + 34pq + 33q2
Since, P and q are real and p ≠ q, therefore, the value of D ≥ 0.
Thus, the roots of the given equation are real and unequal.
Hence, proved
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
k2x2 - 2(2k - 1)x + 4 = 0
Write the value of k for which the quadratic equation x2 − kx + 4 = 0 has equal roots.
If one root of the quadratic equation ax2 + bx + c = 0 is double the other, prove that 2b2 = 9 ac.
Find the value(s) of k for which each of the following quadratic equation has equal roots: 3kx2 = 4(kx – 1)
Find the value(s) of k for which each of the following quadratic equation has equal roots: (k + 4)x2 + (k + 1)x + 1 =0 Also, find the roots for that value (s) of k in each case.
The equation 12x2 + 4kx + 3 = 0 has real and equal roots, if:
Which constant must be added and subtracted to solve the quadratic equation `9x^2 + 3/4x - sqrt(2) = 0` by the method of completing the square?
State whether the following quadratic equation have two distinct real roots. Justify your answer.
(x + 1)(x – 2) + x = 0
Find the roots of the quadratic equation by using the quadratic formula in the following:
`x^2 + 2sqrt(2)x - 6 = 0`
The number of integral values of m for which the equation (1 + m2)x2 – 2(1 + 3m)x + (1 + 8m) = 0 has no real root is ______.