Advertisements
Advertisements
प्रश्न
If the roots of the equations ax2 + 2bx + c = 0 and `bx^2-2sqrt(ac)x+b = 0` are simultaneously real, then prove that b2 = ac.
उत्तर
The given equations are
ax2 + 2bx + c = 0 ............ (1)
`bx^2-2sqrt(ac)x+b = 0` ............. (2)
Roots are simultaneously real
Then prove that b2 = ac
Let D1 and D2 be the discriminants of equation (1) and (2) respectively,
Then,
D1 = (2b)2 - 4ac
= 4b2 - 4ac
And
`D_2=(-2sqrt(ac))^2-4xxbxxb`
= 4ac - 4b2
Both the given equation will have real roots, if D1 ≥ 0 and D2 ≥ 0
4b2 - 4ac ≥ 0
4b2 ≥ 4ac
b2 ≥ ac ............... (3)
4ac - 4b2 ≥ 0
4ac ≥ 4b2
ac ≥ b2 ................... (4)
From equations (3) and (4) we get
b2 = ac
Hence, b2 = ac
APPEARS IN
संबंधित प्रश्न
Find the positive value(s) of k for which quadratic equations x2 + kx + 64 = 0 and x2 – 8x + k = 0 both will have real roots ?
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
`2sqrt(3)x^2 - 2sqrt(2)x - sqrt(3) = 0`
Solve for x: (x2 - 5x)2 - 7(x2 - 5x) + 6 = 0; x ∈ R.
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
kx2 + 2x + 3k = 0
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
2x2 - (3k + 1)x - k + 7 = 0.
Discuss the nature of the roots of the following equation: `sqrt(3)x^2 - 2x - sqrt(3)` = 0
Choose the correct alternative answer for the following sub questions and write the correct alphabet.
What is the value of discriminant for the quadratic equation X2 – 2X – 3 = 0?
Every quadratic equation has at least one real root.
If α and β are the distinct roots of the equation `x^2 + (3)^(1/4)x + 3^(1/2)` = 0, then the value of α96(α12 – 1) + β96(β12 – 1) is equal to ______.
The roots of quadratic equation x(x + 8) + 12 = 0 are ______.