Advertisements
Advertisements
प्रश्न
Find the values of a and b for which the following system of equations has infinitely many solutions:
2x + 3y = 7
(a - 1)x + (a + 1)y = (3a - 1)
उत्तर
The given system of equations is
2x + 3y - 7 = 0
(a - 1)x + (a + 1)y - (3a - 1) = 0
It is of the form
`a_1x + b_1y + c_1 = 0` `
a_2x + b_2y + c_2 = 0`
Where `a_1 = 2, b_1 = 3, c_1 = -7`
And `a_2 = a - 1, b_2 = a + 1, c_2 = -(3a - 1)`
The given system of equations will be have infinite number of solutions, if
`a_1/a_2 = b_1/b_2 = c_1/c_2`
`=> 2/(a - b) = 3/(a + 1) = (-7)/(-(3a - 1))`
`=> 2/(a - 1) = 3/(a + 1) = (-7)/(-(3a - 1))`
`=> 2/(a - 1) = 3/(a + 1) = (-7)/(3a -1)`
`=> 3/(a - 1) = 3/(a + 1) and 3/(a + 1) = 7/(3a - 1)`
=> 2(a + 1) = 3(a - 1) and 3(3a - 1) = 7(a + 1)
=>2a + 2 = 3a - 3 and 9a - 3 = 7a + 7
=> 2a - 3a = -3 and 9a - 3 = 7a + 7
=> -a = -5 and 2a = 10
=> a = 5 and a = 10/2 = 5
=> a =5
Hence, the given system of equations will have infinitely many solutions
if a = 5
APPEARS IN
संबंधित प्रश्न
In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:
2x + y - 5 = 0
4x + 2y - 10 = 0
In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:
kx + 2y - 5 = 0
3x + y - 1 = 0
Solve for x and y:
`5/(x+1) + 2/(y−1) = 1/2, 10/(x+1) - 2/(y−1) = 5/2, where x ≠ 1, y ≠ 1.`
Abdul travelled 300 km by train and 200 km by taxi taking 5 hours and 30 minutes. But, if he travels 260km by train and 240km by taxi, he takes 6 minutes longer. Find the speed of the train and that of taxi.
Places A and B are 160 km apart on a highway. A car starts from A and another car starts from B simultaneously. If they travel in the same direction, they meet in 8 hours. But, if they travel towards each other, they meet in 2 hours. Find the speed of each car.
2 men and 5 boys can finish a piece of work in 4 days, while 3 men and 6 boys can finish it in 3 days. Find the time taken by one man alone to finish the work and that taken by one boy alone to finish the work.
Find the value of k for which the system of linear equations has an infinite number of solutions.
10x + 5y – (k – 5) = 0,
20x + 10y – k = 0.
A number consists of two digits whose sum is 10. If 18 is subtracted form the number, its digits are reversed. Find the number.
If 15x + 17y = 21 and 17x + 15y = 11, then find the value of x + y.
Read the following passage:
A coaching institute of Mathematics conducts classes in two batches I and II and fees for rich and poor children are different. In batch I, there are 20 poor and 5 rich children, whereas in batch II, there are 5 poor and 25 rich children. The total monthly collection of fees from batch I is ₹9,000 and from batch II is ₹26,000. Assume that each poor child pays ₹x per month and each rich child pays ₹y per month. |
Based on the above information, answer the following questions:
- Represent the information given above in terms of x and y.
- Find the monthly fee paid by a poor child.
OR
Find the difference in the monthly fee paid by a poor child and a rich child. - If there are 10 poor and 20 rich children in batch II, what is the total monthly collection of fees from batch II?