Advertisements
Advertisements
प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
(k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0
उत्तर
The given quadric equation is (k + 1)x2 - 2(3k + 1)x + 8k + 1 = 0, and roots are real and equal
Then find the value of k.
Here,
a = k + 1, b = -2(3k + 1)x and c = 8k + 1
As we know that D = b2 - 4ac
Putting the value of a = k + 1, b = -2(3k + 1)x and c = 8k + 1
= (-2(3k + 1))2 - 4 x (k + 1) x (8k + 1)
= 4(9k2 + 6k + 1) - 4(8k2 + 9k + 1)
= 36k2 + 24k + 4 - 32k2 - 36k - 4
= 4k2 - 12k
The given equation will have real and equal roots, if D = 0
4k2 - 12k = 0
k2 - 3k = 0
Now factorizing of the above equation
k(k - 3) = 0
So, either
k = 0
Or
k - 3 = 0
k = 3
Therefore, the value of k = 0, 3.
APPEARS IN
संबंधित प्रश्न
Find the value of p for which the quadratic equation (2p + 1)x2 − (7p + 2)x + (7p − 3) = 0 has equal roots. Also find these roots.
If p, q are real and p ≠ q, then show that the roots of the equation (p − q) x2 + 5(p + q) x− 2(p − q) = 0 are real and unequal.
What is the nature of roots of the quadratic equation 4x2 − 12x − 9 = 0?
`sqrt(3)x^2 + 10x + 7sqrt(3)` = 0
Find the values of p for which the equation 3x2 – px + 5 = 0 has real roots.
Choose the correct answer from the given four options :
If the equation 2x² – 5x + (k + 3) = 0 has equal roots then the value of k is
Choose the correct answer from the given four options :
If the equation 3x² – kx + 2k =0 roots, then the the value(s) of k is (are)
The roots of the quadratic equation `2"x"^2 - 2sqrt2"x" + 1 = 0` are:
State whether the following quadratic equation have two distinct real roots. Justify your answer.
2x2 + x – 1 = 0
Every quadratic equation has at least one real root.