Advertisements
Advertisements
प्रश्न
Find whether the following equation have real roots. If real roots exist, find them.
`1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`
उत्तर
Given equation is `1/(2x - 3) + 1/(x - 5) = 1, x ≠ 3/2, 5`
⇒ `(x - 5 + 2x - 3)/((2x - 5)(x - 5))` = 1
⇒ `(3x - 8)/(2x^2 - 5x - 10x + 25)` = 1
⇒ `(3x - 8)/(2x^2 - 15x + 25)` = 1
⇒ 3x – 8 = 2x2 – 15x + 25
⇒ 2x2 – 15x – 3x + 25 + 8 = 0
⇒ 2x2 – 18x + 33 = 0
On company with ax2 + bx + c = 0, we get
a = 2, b = – 18 and c = 33
∴ Discriminant, D = b2 – 4ac
= (–18)2 – 4 × 2(33)
= 324 – 264
= 60 > 0
Therefore, the equation 2x2 – 18x + 33 = 0 has two distinct real roots.
Roots, `x = (-b +- sqrt(D))/(2a)`
= `(-(-18) +- sqrt(60))/(2(2))`
= `(18 +- 2sqrt(15))/4`
= `(9 +- sqrt(15))/2`
= `(9 + sqrt(15))/2, (9 - sqrt(15))/2`
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 has equal roots. Also find these roots.
Determine the nature of the roots of the following quadratic equation:
`3/5x^2-2/3x+1=0`
Find the value of the discriminant in the following quadratic equation :
10 x - `1/x` = 3
Find the value of the discriminant in the following quadratic equation :
`4 sqrt 3 "x"^2 + 5"x" - 2 sqrt 3 = 0`
Determine the nature of the roots of the following quadratic equation :
x2 -5x+ 7= 0
Solve the following quadratic equation using formula method only
4 - 11 x = 3x2
If α and β are the roots of the equation 2x2 – 3x – 6 = 0. The equation whose roots are `1/α` and `1/β` is:
The value of k for which the equation x2 + 2(k + 1)x + k2 = 0 has equal roots is:
Does there exist a quadratic equation whose coefficients are rational but both of its roots are irrational? Justify your answer.
Which of the following equations has two real and distinct roots?