Advertisements
Advertisements
प्रश्न
Find x and y, if `[(3, -2),(-1, 4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
उत्तर
Given:
`[(3,-2),(-1,4)][(2x),(1)] + 2[(-4),(5)] = 4[(2),(y)]`
`[(3 xx 2x + (-2)(1)),(-1 xx 2x + 4(1))] + [(-8),(10)] = [(8),(4y)]`
`[(6x - 2),(-2x + 4)] + [(-8),(10)] = [(8),(4y)]`
`[(6x - 2 - 8),(-2x + 4 x + 10)] = [(8),(4y)]`
`[(6x - 10),(-2x + 14)] = [(8), (4y)]`
Now, comparing the corresponding elements of two equal matrices; we have
6x – 10 = 8
∴ 6x = 18
∴ x = `(18)/(6)` = 3 ...(Using x = 3)
And 4y = –2x + 14
4y = –2 × 3 + 14
`\implies` 4y = 14 – 6 = 8
i.e. y = `(8)/(4)` = 2
Thus, `{{:(x = 3),(y = 2):}}`
संबंधित प्रश्न
Given A = `[(2, -6),(2, 0)]`, B = `[(-3, 2),(4, 0)]` and C = `[(4, 0),(0, 2)]`. Find the matrix X such that A + 2X = 2B + C.
Write the additive inverse of matrices A, B and C:
Where `A = [(6, -5)]; B = [(-2, 0),(4, -1)]` and `C = [(-7), (4)]`.
Given `A = [(2,1),(3,0)]`, `B = [(1,1),(5,2)]` and `C = [(-3-1),(0 0)]` Find A + 2C - B
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`. Solve for matrix X:
X + 2A = B
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
If A = `[(0, 2),(5, -2)]`, B = `[(1, -1),(3, 2)]` and I is a unit matrix of order 2 × 2, find BA
Given A = `[(4, 1),(2, 3)]` and B = `[(1, 0),(-2, 1)]`, find A2 – AB + 2B
Given A = `[(1, 4),(2, 3)]` and B = `[(-4, -1),(-3, -2)]` find the matrix 2A + B
Find X and Y If X + Y = `[(7, 0),(2, 5)]` and X – Y = `[(3, 0),(0, 3)]`
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]`, the values of x, y and z are ______.