Advertisements
Advertisements
प्रश्न
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
उत्तर
We have
A = `[(1 , 0),(-1 ,7)]`
A2 = AA = `[(1 , 0),(-1 ,7)][(1 , 0),(-1 ,7)]`
= `[(1 , 0),(-8 ,49)]`
And 8A + kI = 8 `[(1 , 0),(-1 ,7)] +k [(1 , 0),(0 ,1)]`
= `[(8 , 0),(-8 , 56)] + [(k , 0),(0 , k)]`
= `[(8 + k , 0),(-8 , 56 + k)]`
Thus A2 = 8A + kI
⇒ `[(1 , 0),(-8 ,49)] = [(8 + k , 0),(-8 , 56 + k)]`
⇒ 1 = 8 + k
⇒ k = -7
Also 56 + k = 49
⇒ k = -7.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
If A = [4 7] and B = [3 1] , find: A+2B
If P =`|(2,9),(5,7)|` and Q = `|(7,3),(4,1)|` find 2Q - P
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
If A = `[(3, 3),(p, q)]` and A2 = 0 find p and q
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d