Advertisements
Advertisements
प्रश्न
If `"A" = [(1 , 2),(-2 , 3)], "B" = [(2 , 1),(2 , 3)] "C" = [(-3 , 1),(2 , 0)]` verify that
(AB)C = A(BC),
उत्तर
AB = `[(1 , 2),(-2 , 3)] [(2 , 1),(2 , 3)]`
= `[(2 + 4, 1+6),(-4 + 6 , -2 + 9)] = [(6 , 7),(2 , 7)]`
(AB)C = `[(6 , 7),(2 , 7)][(-3 , 1),(2 , 0)]`
= `[(-18 + 14 , 6 + 0),(-6 + 14, 2 +0)] = [(-4 , 6),(8 , 2)]`
Now , BC = `[(2 , 1),(2 , 3)][(-3 , 1),(2 , 0)]`
= `[(-6 + 2 , 2 + 0),(-6 + 6 , 2 + 0)] = [(-4 , 2),(0 , 2)]`
A(BC) = `[(1 , 2),(-2 , 3)][(-4 , 2),(0 , 2)]`
= `[(-4 + 0 , 2 + 4),(8 + 0 , -4 + 6)] = [(-4 , 6),(8 , 2)]`
Hence, (AB)C = A(BC).
APPEARS IN
संबंधित प्रश्न
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
If A = `|(17 , 5 , 19),(11 , 8 , 13)|` and B =`|(9,3,7),(1,6,5)|` , find 2A - 3B
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Find the value of x given that A2 = B
A = `[(2, 12),(0 , 1)]` B = `[(4, x),(0, 1)]`
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Choose the correct answer from the given four options :
If `[(x - 2y, 5),(3, y)] = [(6, 5),(3, -2)]` then the value of x is
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`