Advertisements
Advertisements
प्रश्न
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
उत्तर
Here A2 - (a + d) A
= `[(a , b),(c , d)][(a , b),(c , d)] -(a + d)[(a , b),(c ,d)]`
= `[(a^2 + bc , ab + bd),(ac + dc, cb + d^2)] - [(a^2 + ad , ab + bd),(ac + dc , ad + d^2)]`
= `[(bc - ad , 0),(0 , bc -ad)] = (bc - ad)[(1 , 0),(0 , 1)]`
= (bc - ad) I.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
If A = `[(2, 1),(1, 3)]` and B = `[(3),(-11)]`, find the matrix X such that AX = B.
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Find X and Y , if `|(1,2),(2 , -3)| |(x),(y)| = |(-1) , (12)|`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
If `[(-1, 0),(0, 1)] [(a, b),(c, d)] = [(1, 0),(0, -1)]` find a,b,c and d
Find a and b if `[(a - b, b - 4),(b + 4, a - 2)] [(2, 0),(0, 2)] = [(2, -2),(14, 0)]`