Advertisements
Advertisements
प्रश्न
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
उत्तर
Here A2 - (a + d) A
= `[(a , b),(c , d)][(a , b),(c , d)] -(a + d)[(a , b),(c ,d)]`
= `[(a^2 + bc , ab + bd),(ac + dc, cb + d^2)] - [(a^2 + ad , ab + bd),(ac + dc , ad + d^2)]`
= `[(bc - ad , 0),(0 , bc -ad)] = (bc - ad)[(1 , 0),(0 , 1)]`
= (bc - ad) I.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If A = `[(4, 2),(1,1)]`, find (A – 2I)(A – 3I).
Find x and y, if : `[(x, 3x),(y, 4y)][(2),(1)] = [(5),(12)]`.
Find the positive integers p and q such that :
`[p q][p/q]= [25]`
If M = `|(8,3),(9,7),(4,3)|` and N = `|(4,7),(5,3),(10 , 1)|` find M+N
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If A = `[(9 , 1),(5 , 3)]` and B = `[(1 , 5),(7 , -11)]`, find matrix X such that 3A + 5B - 2X = 0.
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`