Advertisements
Advertisements
प्रश्न
Let A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`. Find A2 + AB + B2
उत्तर
A = `[(1 , 0),(2 , 1)]`, B = `[(2 , 3),(-1 , 0)]`
A2 = A × A = `[(1 , 0),(2 , 1)] xx [(1 , 0),(2 , 1)]`
= `[(1 xx 1 + 0 xx 2, 1 xx 0 + 0 xx 1),(2 xx 1 + 1 xx 2, 2 xx 0 + 1 xx 1)]`
= `[(1 + 0, 0 + 0),(2 + 2, 0 + 1)]`
= `[(1, 0),(4, 1)]`
AB = A × B = `[(1, 0),(2, 1)] xx [(2, 3),(-1, 0)]`
= `[(1 xx 2 + 0 xx (-1), 1 xx 3 + 0 xx 0),(2 xx 2 + 1 xx (-1), 2 xx 3 + 1 xx 0)]`
= `[(2 + 0, 3 + 0),(4 + (-1), 6 + 0)]`
= `[(2, 3),(3, 6)]`
B2 = B × B = `[(2, 3),(-1, 0)] xx [(2, 3),(-1, 0)]`
= `[(2 xx 2 + 3 xx (-1), 2 xx 3 + 3 xx 0),(-1 xx 2 + 0 xx (-1), -1 xx 3 + 0 xx 0)]`
= `[(4 - 3, 6 + 0),(-2 + 0, -3 + 0)]`
= `[(1, 6),(-2, -3)]`
∴ A2 + AB + B2 = `[(1, 0),(4, 1)] + [(2, 3),(3, 6)] + [(1, 6),(-2, -3)]`
= `[(1 + 2 + 1, 0 + 3 + 6),(4 + 3 - 2, 1 + 6 - 3)]`
= `[(4, 9),(5, 4)]`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
Solve for x and y :
`[(3,-1),(2,-1)][(-2),(4)]=[(x),(y)]`
Given A = `[(p , 0),(0, 2)], "B" = [(0 , -q), (1, 0)], "C" = [(2, -2),(2, 2)]` and BA = C2.
Find the values of p and q.
Evaluate x,y if
`[(3 , -2),(-1 , 4)][(2x),(1)]+2[(-4),(5)] = [(8),(4y)]`
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
Choose the correct answer from the given four options :
If `[(x + 3, 4),(y - 4, x + y)] = [(5, 4),(3, 9)]` then the values of x and y are
Choose the correct answer from the given four options :
If `x[(2),(3)] + y[(-1),(0)] = [(10),(6)]` then the values of x and y are
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
If A = `[(3/5, 2/5),(x, y)]` and A2 = I, find x,y
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I