Advertisements
Advertisements
प्रश्न
Find the values of a and below `[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
उत्तर
`[(a + 3, b^2 + 2),(0, -6)] = [(2a + 1, 3b),(0, b^2 - 5b)]`
comparing the corresponding elements
a + 3 = 2a + 1
⇒ 2a – a =3 – 1
⇒ a = 2
b2 + 2 = 3b
⇒ b2 – 3b + 2 = 0
⇒ b2 – b – 2b + 2 = 0
⇒ b (b – 1) – 2 (b – 1) = 0
⇒ (b – 1) (b – 2) = 0.
Either b – 1 = 0,
then b = 1
or
b – 2 = 0,
then b = 2
Hence a = 2, b = 2 or 1.
APPEARS IN
संबंधित प्रश्न
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find (AB)B
Let A = `[(4, -2),(6, -3)]`, B = `[(0, 2),(1, -1)]` and C = `[(-2, 3),(1, -1)]`. Find A2 – A + BC
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find A - 2B
If A = `[(3, x),(0, 1)]` and B = `[(9, 16),(0, -y)]`, find x and y when A2 = B.
If A = `[(1 , 0),(-1 ,7)]` and I = `[(1 , 0),(0 ,1)]`, then find k so that A2 = 8A + kI.
If `"A" = [(a , b),(c , d)] and "I" = [(1 , 0),(0 , 1)]` show that A2 - (a + d) A = (bc - ad) I.
Find the values of x, y, a and b, if `[(3x + 4y, 2, x - 2y),(a + b, 2a - b, -1)] = [(2, 2, 4),(5, 5, 1)]`
If A = `[(sec60°, cos90°),(-3tan45°, sin90°)] and "B" = [(0, cos45°),(-2, 3sin90°)]` Find : A2
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I